Understanding Log: ax=b [here a is called base, x means exponent and b is the result]
We can say the above expression as: logab=x
Hence we can say that logarithm is an equivalent way to express an exponential identity and the above two expressions are same.
Generally, the base is taken as 10 when it is not written as subscript. Therefore,
log b means log10b, if base is not given and we assume it 10.
1. If log3x = 2. Find the value of x.
  A.  2
  B.  3
  C.  9
  D.  8
     
   
View Answer

log3x = 2
⇒ 32 = x
∴ x = 9


2. If log3[log5(log2a)] = 0, find the value of a
  A.  32
  B.  8
  C.  10
  D.  None of the above
     
   
View Answer

log3[log5(log2a)] = 0
log3[log5(log2a)] = log31 [As log31 = 0]
or, log5(log2a) = 1
or, 51 = log2a
or, log2a = 5
or, 25 = a
∴ a = 32


3. If log464=b, find the value of b.
  A.  2
  B.  -3
  C.  1
  D.  3
     
   
View Answer

log464 = b
or, b = log464
or, 64 = 4b
or, 43 = 4b
∴ b = 3


4. What is the value of log3
(
1 / 9
)
?
  A.  -2
  B.  -1
  C.  2
  D.  1
     
   
View Answer

Let, log3
(
1 / 9
)
= a
or,
1 / 9
= 3a
or,
1 / 32
= 3a
or, 3−2 = 3a
∴ a = −2


5. if log 2√2
(
1 / 64
)
= a, find the value of a.
  A.  -16
  B.  -8
  C.  -4
  D.  4
     
   
View Answer

1 / 64
= (2√2)a
1 / 64
= 2(3a/2)
or,
1 / 26
= 2(3a/2)
or, 2−6 = 2(3a/2)
or, −6 =
3a / 2

or, −6 x 2 = 3a
or, a =
6 x 2 / 3
= −2 x 2 = −4


6. If logx∛3 =
1 / 15
, What is the value of x ?
  A.  81
  B.  243
  C.  9
  D.  27
     
   
View Answer

logx∛3 =
1 / 15

or, 3√3 = x1/15
or, x1/15 = 3√3
or, x = (3)(1/3) x 15
or, x = (3)5
∴ x = 243


7. If logb√3 =
1 / 8
, find the value of b.
  A.  1
  B.  3
  C.  9
  D.  81
     
   
View Answer

logb√3 =
1 / 8

or, √3 = b1/8
or, b1/8 = √3
or, b = (3)(1/2) x 8
or, b = (3)4
∴ b = 81


8. Find the value of: 3 log35
  A.  5
  B.  3
  C.  1
  D.  15
     
   
View Answer

Shortcut:
alogan = n
Let z = alogan
Presenting the above exponential identity in logarithm
loga(z) = loga(n)
∴ z = n
or, alogan = n
Using the shortcut, we get:
3log35 = 5
Hence, its value is 5.


9. Find the value of 22 − log25
  A.  
1 / 5
,
  B.  4
  C.  
4 / 5
  D.  20
     
   
View Answer

Shortcut:
alogan = n
Let z = alogan
Presenting the above exponential identity in logarithm
loga(z) = loga(n)
∴ z = n
or, alogan = n
Here, 22 − log25
or, 22 x 2− log25
or, 22 x 2log25(−1)
or, 22 x 5−1
or,
2 x 2 / 5

or,
4 / 5


10. Find the value of 53 + log55 − log255
  A.  125
  B.  125√5
  C.  5
  D.  None of the above
     
   
View Answer

= 53 x 5log55 x 5 −log255
= 53 x 51 x 5−log255
= 53 x 51 x 5−log525
= 53 x 5 x 5−1/2log55
= 53 x 5 x (5log55)−1/2
= 53 x 5 x (5)−1/2
= 53 x 5 x
1 / √5

= 53 x 5 x
√5 / √5 x √5

= 53 x 5 x
√5 / 5

= 53 x √5
= 125√5


Copyright © 2020-2022. All rights reserved. Designed, Developed and content provided by Anjula Graphics & Web Desigining .