Shortcut:
If a bag contains 'p' red, 'q' yellow and 'r' green balls, 3 balls are drawn randomly, then the probability of the balls drawn contain
(i) exactly 2 green balls is given by
3r(r − 1)(p + q)
/
(p + q + r)(p + q + r − 1)(p + q + r − 2)
or,
(p + q)C1 x rC2
/
(p + q + r)C3
(ii) exactly 2 yellow balls is given by:
3q(q − 1)(p + r)
/
(p + q + r)(p + q + r − 1)(p + q + r − 2)
or,
(p + r)C1 x qC2
/
(p + q + r)C3
(iii) exactly 2 red balls is given by:
3p(p − 1)(q + r)
/
(p + q + r)(p + q + r − 1)(p + q + r − 2)
or,
(q + r)C1 x pC2
/
(p + q + r)C3
Here, p = 3, q = 5, r = 4
Using these values in the shortcut (i), we get:
P(3 balls having 2 exactly green balls) =
3 x 4(4 − 1)(3 + 5)
/
(3 + 5 + 4)(3 + 5 + 4 − 1)(3 + 5 + 4 − 2)
=
3 x 4 x 3 x 8
/
12 x 11 x 10
=
3 x 4
/
11 x 5
=
12
/
55
|