61. In △ ABC, D and E are two mid points of sides AB and AC respetively. If ∠ BAC = 40° and ∠ ABC = 65° then ∠ CED is:
  A.  130°
  B.  75°
  C.  125°
  D.  105°
     
   
View Answer


62. In △ABC, ∠B = 60° and ∠ C = 40°, AD and AE are respectively the bisector of ∠ A and perpendicular on BC. The measure of ∠ EAD is:
  A.  11°
  B.  10°
  C.  12°
  D.  
     
   
View Answer


63. The side BC of a triangle ABC is produced to D. If ∠ ACD = 112° and ∠B = 3/4∠ A, then the measure of ∠B is
  A.  30°
  B.  48°
  C.  45°
  D.  64°
     
   
View Answer


64. In a triangle ABC, if ∠A + ∠C = 140° and ∠A + 3 ∠B = 180°, then ∠A is equal to
  A.  80°
  B.  40°
  C.  60°
  D.  20°
     
   
View Answer


65. Which of the set of three sides can't form a triangle?
  A.  3cm, 6cm, 7cm
  B.  5cm, 8cm, 15cm
  C.  8cm, 15cm, 18cm
  D.  6cm, 7cm, 11cm
     
   
View Answer


66. In △ABC, AB = a − b, AC = √(a2 + b2) and BC = √2ab, then find angle B.
  A.  60°
  B.  30°
  C.  90°
  D.  45°
     
   
View Answer


67. If in △ABC, DE || BC. AB = 7.5 cm, BD = 6 cm and DE = 2 cm, then the length of BC in cm is:
  A.  6
  B.  8
  C.  10
  D.  10.5
     
   
View Answer


68. In △ABC, ∠B = 70° and ∠C = 60°. The internal bisectors of the two smallest angles of △ABC meet at O. The angle so formed at O is
  A.  125°
  B.  120°
  C.  115°
  D.  110°
     
   
View Answer


69. If the angles of a triangle are in the ratio of 2 : 3 : 4, then the difference of the measure of greatest angle and smallest angle is:
  A.  20°
  B.  30°
  C.  40°
  D.  50°
     
   
View Answer


70. The point where the all three medians of a triangle meet is called
  A.  Centroid
  B.  Incentre
  C.  Orthocentre
  D.  Orthocentre
     
   
View Answer


Copyright © 2020-2022. All rights reserved. Designed, Developed and content provided by Anjula Graphics & Web Desigining .